Java中的IO - Alias的博客

Java中的IO

字符流和字节流

字节与字符

Byte(字节)是计算机操作数据的最小单位由8位bit组成 取值(-128-127)

Char(字符)是用户的可读写的最小单位,在Java里面由16位bit组成 取值(0-65535)

字节流

操作byte类型数据,主要操作类是OutputStream、InputStream的子类,不用缓冲区,直接对文件本身操作

字符流

操作字符类型数据,主要操作类是Reader、Writer的子类;使用缓冲区缓冲字符,如果不关闭流就不会输出任何内容。

相互转换

OutputStreamWriter:是Writer的子类,将输出的字符流变为字节流,即将一个字符流的输出对象变为字节流输出对象。

InputStreamReader:是Reader的子类,将输入的字节流变为字符流,即将一个字节流的输入对象变为字符流的输入对象。

输入流和输出流

输入、输出,有一个参照物,参照物就是存储数据的介质。如果是把对象读入到介质中,这就是输入。从介质中向外读数据,这就是输出。

所以,输入流是把数据写入存储介质的。输出流是从存储介质中把数据读取出来。

字节流和字符流之间相互转换示例

字符流转换字节流

1
2
3
4
5
6
7
8
9
10
public static void main(String[] args) throws IOException {
File f = new File("test.txt");

// OutputStreamWriter
OutputStreamWriter osw = new OutputStreamWriter(new FileOutputStream(f),"UTF-8");

osw.write("我是字符流转换成字节流输出的");
osw.close();

}

字节流转换字符流

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static void main(String[] args) throws IOException {

File f = new File("test.txt");

InputStreamReader inr = new InputStreamReader(new FileInputStream(f),"UTF-8");

char[] buf = new char[1024];

int len = inr.read(buf);
System.out.println(new String(buf,0,len));

inr.close();

}

同步和异步

如果A调用B:

如果是同步,B在接到A的调用后,会立即执行要做的事。A的本次调用能得到结果。

如果是异步,B在接到A的调用后,不保证会立即执行要做的事,但是保证回去做,B在做好了之后会通知A。

同步、异步和阻塞、非阻塞的区别

前二者是描述被调用方,后二者是描述调用方的

前两者和后两者没有必然联系

阻塞和非阻塞

如果A调用B:

如果是阻塞,A在发出调用之后,要一直等待B返回结果。

如果是非阻塞,A在发出调用后,不需要等到,可以去做自己的事情。

5中IO模型

阻塞式IO模型

即在读写数据过程中会发生阻塞。

当用户线程发出IO请求后,内核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞,用户线程交出CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除block状态。

非阻塞IO模型

当用户线程发起一个read操作后并不需要等待,而是马上就得到一个结果。如果结果是一个error时,他就知道数据还没有准备好,于是他可以再次发送read操作。一旦内核中的数据准备好了,并且又再次收到了用户线程的请求,那么它马上就将数据拷贝到了用户线程,然后返回。

所以在此模型中用户线程需要不断地询问内核数据是否就绪,也就是说非阻塞IO不会交出CPU而是会一直占用CPU

1
2
3
4
5
6
7
while(true){
data = socket.read();
if(data!= error){
处理数据
break;
}
}

问题就是这里会不断地去询问内核数据是否就绪而导致CPU占用率非常高。所以一般很少使用while来读取数据

IO复用模型

Java NIO实际上就是多路复用IO。

在该模型中,会有一个线程不断地去轮询多个socket状态,只有当socket真正有读写事件时,才真正调用实际的IO读写操作。因为在该模型中,只需要一个线程就可以管理多个socket,系统不需要建立新的进程或者线程,也不必去维护,并且只有真正有读写事件进行时,才会使用IO资源。

在Java NIO中,是通过selector.selector()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这种方式会导致用户线程的阻塞。

也许有朋友会说,我可以采用 多线程+ 阻塞IO 达到类似的效果,但是由于在多线程 + 阻塞IO 中,每个socket对应一个线程,这样会造成很大的资源占用,并且尤其是对于长连接来说,线程的资源一直不会释放,如果后面陆续有很多连接的话,就会造成性能上的瓶颈。

多路复用IO比较适合连接数比较多的情况。

另外多路复用IO为何比非阻塞IO模型的效率高是因为在非阻塞IO中,不断地询问socket状态是通过用户线程去进行的,而在多路复用IO中,轮询每个socket状态是内核在进行的,这个效率要比用户线程要高的多。

不过要注意的是,多路复用IO模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件逐一进行响应。因此对于多路复用IO模型来说,一旦事件响应体很大,那么就会导致后续的事件迟迟得不到处理,并且会影响新的事件轮询。

信号驱动IO模型

在信号驱动IO模型中,当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用IO读写操作来进行实际的IO请求操作。

异步IO模型

异步IO模型是比较理想的IO模型,在异步IO模型中,当用户线程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从内核的角度,当它受到一个asynchronous read之后,它会立刻返回,说明read请求已经成功发起了,因此不会对用户线程产生任何block。然后,内核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程发送一个信号,告诉它read操作完成了。也就说用户线程完全不需要知道实际的整个IO操作是如何进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示IO操作已经完成,可以直接去使用数据了。

也就说在异步IO模型中,IO操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完成,然后发送一个信号告知用户线程操作已完成。用户线程中不需要再次调用IO函数进行具体的读写。这点是和信号驱动模型有所不同的,在信号驱动模型中,当用户线程接收到信号表示数据已经就绪,然后需要用户线程调用IO函数进行实际的读写操作;而在异步IO模型中,收到信号表示IO操作已经完成,不需要再在用户线程中调用IO函数进行实际的读写操作。

注意,异步IO是需要操作系统的底层支持,在Java 7中,提供了Asynchronous IO。

前面四种IO模型实际上都属于同步IO,只有最后一种是真正的异步IO,因为无论是多路复用IO还是信号驱动模型,IO操作的第2个阶段都会引起用户线程阻塞,也就是内核进行数据拷贝的过程都会让用户线程阻塞。

关于BIO、NIO、AIO

BIO

Java BIO即Block I/O, 同步并阻塞的IO

BIO就是传统java.io包下面代码的实现。

同步阻塞I/O模式,数据的读取写入必须阻塞在一个线程内等待其完成。这里假设一个烧开水的场景,有一排水壶在烧开水,BIO的工作模式就是, 叫一个线程停留在一个水壶那,直到这个水壶烧开,才去处理下一个水壶。但是实际上线程在等待水壶烧开的时间段什么都没有做。

BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。

使用BIO实现文件的读取和写入:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//Initializes The Object
User1 user = new User1();
user.setName("Alias");
user.setAge(21);
System.out.println(user);

//Write Obj to File
ObjectOutputStream oos = null;
try {
oos = new ObjectOutputStream(new FileOutputStream("tempFile"));
oos.writeObject(user);
} catch (IOException e) {
e.printStackTrace();
} finally {
IOUtils.closeQuietly(oos);
}

//Read Obj from File
File file = new File("tempFile");
ObjectInputStream ois = null;
try {
ois = new ObjectInputStream(new FileInputStream(file));
User1 newUser = (User1) ois.readObject();
System.out.println(newUser);
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
} finally {
IOUtils.closeQuietly(ois);
try {
FileUtils.forceDelete(file);
} catch (IOException e) {
e.printStackTrace();
}
}

NIO

NIO 与原来的 I/O 有同样的作用和目的, 他们之间最重要的区别是数据打包和传输的方式。原来的 I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。

面向流 的 I/O 系统一次一个字节地处理数据。一个输入流产生一个字节的数据,一个输出流消费一个字节的数据。为流式数据创建过滤器非常容易。链接几个过滤器,以便每个过滤器只负责单个复杂处理机制的一部分,这样也是相对简单的。不利的一面是,面向流的 I/O 通常相当慢。

一个 面向块 的 I/O 系统以块的形式处理数据。每一个操作都在一步中产生或者消费一个数据块。按块处理数据比按(流式的)字节处理数据要快得多。但是面向块的 I/O 缺少一些面向流的 I/O 所具有的优雅性和简单性。

同时支持阻塞与非阻塞模式,但这里我们以其同步非阻塞I/O模式来说明,那么什么叫做同步非阻塞?如果还拿烧开水来说,NIO的做法是叫一个线程不断地轮询每个水壶的状态,看看是否有水壶的状态发生了改变,从而进行下一步的操作。

NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。

使用NIO实现文件的读取和写入:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

static void readNIO() {
String pathname = "C:\\Users\\lisihan\\Desktop\\jd-gui.cfg";
FileInputStream fin = null;
try {
fin = new FileInputStream(new File(pathname));
FileChannel channel = fin.getChannel();

int capacity = 100;// 字节
ByteBuffer bf = ByteBuffer.allocate(capacity);
System.out.println("限制是:" + bf.limit() + "容量是:" + bf.capacity()
+ "位置是:" + bf.position());
int length = -1;

while ((length = channel.read(bf)) != -1) {

/*
* 注意,读取后,将位置置为0,将limit置为容量, 以备下次读入到字节缓冲中,从0开始存储
*/
bf.clear();
byte[] bytes = bf.array();
System.out.write(bytes, 0, length);
System.out.println();

System.out.println("限制是:" + bf.limit() + "容量是:" + bf.capacity()
+ "位置是:" + bf.position());

}

channel.close();

} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} finally {
if (fin != null) {
try {
fin.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}

static void writeNIO() {
String filename = "out.txt";
FileOutputStream fos = null;
try {

fos = new FileOutputStream(new File(filename));
FileChannel channel = fos.getChannel();
ByteBuffer src = Charset.forName("utf8").encode("你好你好你好你好你好");
// 字节缓冲的容量和limit会随着数据长度变化,不是固定不变的
System.out.println("初始化容量和limit:" + src.capacity() + ","
+ src.limit());
int length = 0;

while ((length = channel.write(src)) != 0) {
/*
* 注意,这里不需要clear,将缓冲中的数据写入到通道中后 第二次接着上一次的顺序往下读
*/
System.out.println("写入长度:" + length);
}

} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} finally {
if (fos != null) {
try {
fos.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}

AIO

异步非阻塞的IO

异步非阻塞I/O模型。异步非阻塞与同步非阻塞的区别在哪里?异步非阻塞无需一个线程去轮询所有IO操作的状态改变,在相应的状态改变后,系统会通知对应的线程来处理。对应到烧开水中就是,为每个水壶上面装了一个开关,水烧开之后,水壶会自动通知我水烧开了。

AIO方式适用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。

使用AIO实现文件读取和写入:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
public class ReadFromFile {
public static void main(String[] args) throws Exception {
Path file = Paths.get("/usr/a.txt");
AsynchronousFileChannel channel = AsynchronousFileChannel.open(file);

ByteBuffer buffer = ByteBuffer.allocate(100_000);
Future<Integer> result = channel.read(buffer, 0);

while (!result.isDone()) {
ProfitCalculator.calculateTax();
}
Integer bytesRead = result.get();
System.out.println("Bytes read [" + bytesRead + "]");
}
}
class ProfitCalculator {
public ProfitCalculator() {
}
public static void calculateTax() {
}
}

public class WriteToFile {

public static void main(String[] args) throws Exception {
AsynchronousFileChannel fileChannel = AsynchronousFileChannel.open(
Paths.get("/asynchronous.txt"), StandardOpenOption.READ,
StandardOpenOption.WRITE, StandardOpenOption.CREATE);
CompletionHandler<Integer, Object> handler = new CompletionHandler<Integer, Object>() {

@Override
public void completed(Integer result, Object attachment) {
System.out.println("Attachment: " + attachment + " " + result
+ " bytes written");
System.out.println("CompletionHandler Thread ID: "
+ Thread.currentThread().getId());
}

@Override
public void failed(Throwable e, Object attachment) {
System.err.println("Attachment: " + attachment + " failed with:");
e.printStackTrace();
}
};

System.out.println("Main Thread ID: " + Thread.currentThread().getId());
fileChannel.write(ByteBuffer.wrap("Sample".getBytes()), 0, "First Write",
handler);
fileChannel.write(ByteBuffer.wrap("Box".getBytes()), 0, "Second Write",
handler);

}
}

Netty

Netty是一个非阻塞I/O客户端-服务器框架,主要用于开发Java网络应用程序,如协议服务器和客户端。异步事件驱动的网络应用程序框架和工具用于简化网络编程,例如TCP和UDP套接字服务器。Netty包括了反应器编程模式的实现。Netty最初由JBoss开发,现在由Netty项目社区开发和维护。

除了作为异步网络应用程序框架,Netty还包括了对HTTP、HTTP2、DNS及其他协议的支持,涵盖了在Servlet容器内运行的能力、对WebSockets的支持、与Google Protocol Buffers的集成、对SSL/TLS的支持以及对用于SPDY协议和消息压缩的支持。自2004年以来,Netty一直在被积极开发

关于Netty的学习后面会单独发文章

评论